Ulinastatin Preconditioning Attenuates Inflammatory Reaction of Hepatic Ischemia Reperfusion Injury in Rats via High Mobility Group Box 1(HMGB1) Inhibition
نویسندگان
چکیده
Objective It has been found that ulinastatin (UTI) can attenuate hepatic injury in a rat model of ischemia reperfusion (IR), but the specific mechanism is unclear. This study aims to investigate possible pathomechanism of ulinastatin in reducing the inflammatory response after hepatic IR. Methods A male sprague-dawley(SD) rat model of hepatic ischemia reperfusion injury was used. The rats were randomly divided into 4 groups on average, which were 0.9% saline and IR group as control, ulinastatin preconditioning (UPC) group, UPC+rHMGB1 (recombinant HMGB1) group and UPC +anti-HMGB1 group. Serum aminotransferases, TNF-α, IL-1 and Myeloperoxidase (MPO) levels were measured. Histopathology examination and apoptotic cell detection and the different expression of HMGB1 protein were also assessed. Results Serum levels of aminotransferases, cytokines and hepatic MPO in UPC and UPC+anti-HMGB1 groups were significantly lower than those in control group (p<0.05). Decreased histologic damage and apoptosis were also seen in these two groups (p<0.05). Conclusions HMGB1 expressions in UPC and UPC+anti-HMGB1 groups were significantly lower than those in the two control groups (p<0.05), pretreatment with ulinastatin attenuated liver IR injury by reducing HMGB1 expression through its anti-inflammatory effects.
منابع مشابه
Ulinastatin attenuates diabetes-induced cardiac dysfunction by the inhibition of inflammation and apoptosis
Ulinastatin exhibits anti-inflammatory activity and protects the heart from ischemia/reperfusion injury. However, whether ulinastatin has a protective effect in diabetic cardiomyopathy is yet to be elucidated. The aim of the present study was to investigate the protective effects of ulinastatin against diabetic cardiomyopathy and its underlying mechanisms. A C57/BL6J mice model of diabetic card...
متن کاملCutting edge: high-mobility group box 1 preconditioning protects against liver ischemia-reperfusion injury.
High mobility group box 1 (HMGB1) is a NF released extracellularly as a late mediator of lethality in sepsis and as an early mediator of inflammation following injury. Here we demonstrate that in contrast to the proinflammatory role of HMGB1, preconditioning with HMGB1 results in protection following hepatic ischemia/reperfusion (I/R). Pretreatment of mice with HMGB1 significantly decreased liv...
متن کاملAllopurinol preconditioning attenuates renal ischemia/reperfusion injury by inhibiting HMGB1 expression in a rat model.
PURPOSE To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model. METHODS Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopuri...
متن کاملPostconditioning with rosuvastatin reduces myocardial ischemia-reperfusion injury by inhibiting high mobility group box 1 protein expression
High mobility group box 1 protein (HMGB1) plays an important role in myocardial ischemia-reperfusion (I/R) injury. Rosuvastatin (RS) preconditioning has been reported to reduce myocardial I/R injury. The aim of this study was to investigate whether postconditioning with RS is able to reduce myocardial I/R injury by inhibiting HMGB1 expression in rats. Anesthetized male rats were subjected to is...
متن کاملIsoproterenol‑mediated heme oxygenase‑1 induction inhibits high mobility group box 1 protein release and protects against rat myocardial ischemia/reperfusion injury in vivo.
Isoproterenol (ISO) has been reported to inhibit high mobility group box 1 (HMGB1) protein release via heme oxygenase-1 (HO-1) induction in lipopolysaccharide (LPS)-activated RAW 264.7 cells and increase the survival rate of cecal ligation and puncture (CLP)-induced septic mice. Therefore, it was examined whether ISO-mediated HO-1 induction inhibits HMGB1 release in cardiac myocytes and attenua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2014